CAV Technology Team Members

30 Members, 25 Sections and Districts, Multidisciplinary

<table>
<thead>
<tr>
<th>Working Group</th>
<th>Members</th>
<th>Group Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway Technology & Infrastructure</td>
<td>9</td>
<td>Erik Smith</td>
</tr>
<tr>
<td>Multimodal Transportation Technology & Infrastructure</td>
<td>7</td>
<td>Joshua Duplantis</td>
</tr>
<tr>
<td>Agency Role Definition & Policy Formulation</td>
<td>7</td>
<td>Steve Glascock</td>
</tr>
<tr>
<td>Departmental Applications</td>
<td>7</td>
<td>Kirk Zeringue</td>
</tr>
</tbody>
</table>
CAV Technology Team Mission

- Develop and maintain a working knowledge of advancements in CAV technology,
- Monitor and share industry activity,
- Determine state and local transportation agency roles in supporting CAV technology,
- Formulate DOTD policy,
- Advise local governments of what we believe their roles and responsibilities are, and
- Identify CAV applications for use within DOTD.
Transportation Challenges

Safety
- 40,200 highway deaths in 2016
- 6,296,000 crashes in 2015
- Leading cause of death for ages 4, 11-27

Mobility
- 5.5 billion hours of travel delay
- $121 billion cost of urban congestion

Environment
- 2.9 billion gallons of wasted fuel
- 56 billion lbs. of additional CO₂
CAV – Maximizing Benefits

Autonomous Vehicle
Operates in isolation from other vehicles using internal sensors

Connected Vehicle
Communicates with nearby vehicles and infrastructure

Connected Automated Vehicle
Leverages autonomous and connected vehicle capabilities

Vehicle to Vehicle (V2V)
Vehicles communicating with each other

Vehicle to Infrastructure (V2I)
Vehicles communicating with infrastructure

Vehicle to Everything Technology (V2X)
Vehicles communicating to all technologies

© Arcadis 2015
Communications Technology

• Dedicated Short-range Communications (DSRC) at 5.9GHz
• Cellular networks provide high-bandwidth data communications – 4G and 5G (future)
• Other wireless technologies such as Wi-Fi, satellite, and HD radio may have roles to play
DSRC Technology: How it Works

Data is transmitted 10 times/sec (300m range)

Wi-Fi adapted for vehicle environment

Privacy built-in (vehicle location NOT intended to be recorded or tracked)

US: FCC originally allocated spectrum at 5.9 GHz for vehicle communications
DSRC Benefits

• Low latency compared to other wireless options, thus well-suited for safety / emergency messaging

• Reduces/eliminates potential interference compared to privatized wireless options
DSRC Challenges

• All vehicles and all roadside infrastructure need to be equipped and standardized to gain maximum benefit

• Cost of infrastructure installation and management expected to be mainly public sector

• Limited private acceptance (i.e., Cadillac, BMW)
Where are we headed with wireless?

- USDOT, AASHTO and states currently demonstrating and testing DSRC with focus on safety and direct traffic management applications
- Private communications entities see a much broader market in providing services to vehicles
- 5G has potential to support low-latency data, but not yet demonstrated
SPaT Challenge

AASHTO – 20 by 2020

• Overcome “Chicken and Egg” problem
 – Vehicles need equipped infrastructure
 – Infrastructure needs equipped vehicles
 – Signals are early opportunity

• Deploy DSRC (V2I) with SPaT in at least one corridor or network (approximately 20 signalized intersections) in each of the 50 states by January 2020

https://www.transportationops.org/spatchallenge/resources
SPaT Challenge

• Design & Deploy RSUs, connect to signals

• Typical applications
 – Adaptive signal operations
 – Transit signal priority
 – Signal performance measures
Questions/Comments

STEPHEN GLASCOCK, P.E., PTOE
ITS Director, LADOTD

o 225-379-2516
e stephen.glascock@la.gov