Crash Data Analysis 101
DOTD Highway Safety Section

Safety Management Process

Objectives & Safety Goals

STAGE 0: LRSP APPLICATION

Systemic Identification

CRASH DATA

STAGE 1: Network Screening

Identify Risk Factors

ROADWAY DATA

STAGE 2: Countermeasure Selection

Site Selection

Data Collection

STAGE 3: Site Specific Identification

Data Analysis

Implementation

Evaluations

STAGE 4: Economic Evaluation

Implementation

Innovations & Prioritization

Key Points

- Perform these task honestly without fear of litigation
- Interest of the public to protect safety information
- Not the function of the judge or jury to second guess decisions

Agenda

- Safety Program Overview, Safety Management Process, & 23 USC 409
- General Crash Data Information
- Crash Querying
- Crash Data Analysis
- General CAT Scan Information
- CAT Scan Process
- Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations

Crash Report Etiquette

- Personal information should be ignored
- Do not print crash reports
- Do not include copies of crash reports in studies or Stage 0

Duration

- 30 minutes
- 30 minutes
- 15 minutes
- 30 minutes
- 15 minutes
- 45 minutes
- 15 minutes

(minute)
Report vs. Data

- Crash Report: form
 - Completed by Law Enforcement Officer (LEO)
 - Owned by LEO’s Agency
 - Entry Options
 - Open notes – free form
 - Certain formats (number, letters, time)
 - List Selection
- Crash Data: warehouse of elements
 - Subset of report
 - List – Codes

Electronic Reporting

- Crash Report
 - Current Version: 2005
 - Minimum: 4 pages
 - Maximum: no limit
 - Format: Paper; Electronic
 - Applications:
 - paper
 - LACrash
 - vendors

Improved Timeliness

- Crash Report
 - Crash Event – 2 pages
 - Each Vehicle – 2 pages
 - Additional Occupants (8, optional)
 - Narrative Supplement (optional)
 - Alternative Grid (optional)
 - Driver/Witness Voluntary Statement
 - (optional; at least 1 page)
 - Railroad Grade Crossing Supplement
 - (1 page)
Vehicle

Crash Report Elements
• Administration – 8
• Crash – 72
• Vehicle – 72
• Commercial – 17
• People – 43
• Passengers – 15
• Pedestrians – 6
• Train – 106

Crash Data @ DOTD
• HSRG -> DOTD
• Apply current year Road Profile
 – May be different than the year before or after
 – User must research location to ensure no changes

Crash Data Elements
• Crash Number – unique identifier
• Intersection flag – 1 is True; 0 is False
• Collision Manner
• (Human) Severity
• Most Harmful Event
• Event Sequence
• Prior Movement

Crash Data Elements
• Pedestrian flag – 1 is True; 0 is False
• Train flag – 1 is True; 0 is False
• Vehicle Configuration
• Coordinates
 – LEO
 – DOTD

Collision Manner
• Top of Diagram
• Primary pattern 2-vehicle
(Human) Severity

LA Codes	**National Safety Council**
A | K – Killed
B | A – Incapacitating Injury
C | B – Evident Injury
D | C – Possible Injury
E | O – No Injury

Derived Elements

- Road Departure
- Intersection ID – geography based
- Location Type
- Crash Type – replaced Accident Type
- Contributing Factor
- Vehicle Severity – uses Human Severity scale

Location Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>related to an intersection (signal, roundabout, stop, etc.)</td>
</tr>
<tr>
<td>B</td>
<td>related to a median crossover</td>
</tr>
<tr>
<td>C</td>
<td>related to a driveway</td>
</tr>
<tr>
<td>D</td>
<td>related to an on-ramp or off-ramp</td>
</tr>
<tr>
<td>E</td>
<td>related to a non-road path (sidewalk, bike, rail, golf-cart, etc.)</td>
</tr>
<tr>
<td>F</td>
<td>related to a merging area</td>
</tr>
<tr>
<td>G</td>
<td>related to a bus-stop</td>
</tr>
<tr>
<td>H</td>
<td>related to a shoulder</td>
</tr>
<tr>
<td>J</td>
<td>related to a turn-lane</td>
</tr>
<tr>
<td>Z</td>
<td>not related to any feature</td>
</tr>
</tbody>
</table>

Crash Type

- Addressed issues
 - Accident Type: Greater detail on single vehicle
 - Difficult to assess non-motorized users, vulnerable users
- Non-motorized User codes: A, B
- Vulnerable User codes: C, D

Vehicle Severity

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>bus</td>
</tr>
<tr>
<td>N</td>
<td>animal</td>
</tr>
<tr>
<td>P</td>
<td>other fixed</td>
</tr>
<tr>
<td>Q</td>
<td>transport</td>
</tr>
<tr>
<td>R</td>
<td>3+ vehicles</td>
</tr>
<tr>
<td>S</td>
<td>2 vehicles</td>
</tr>
<tr>
<td>T</td>
<td>miscellaneous</td>
</tr>
</tbody>
</table>

- Derived from:
 - Most Harmful Event
 - Vehicle Configuration
 - Movement Reason
 - Roadway Conditions

Combined Severity

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.4%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.7%</td>
<td>6.2%</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.9%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>22%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>71%</td>
<td>51%</td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1
• Go to <crashdata.lsu.edu>
• Select: Interactive Crash Manual
 bottom left
• Select the website
• Go to Vehicle 2nd page
• Select Sequence of Events
• Select Railway Vehicle
• Explore crash report manual

Agenda
✓ Safety Program Overview, Safety Management Process, & 23 USC 409
✓ General Crash Data Information
 • Crash Querying
 • Crash Data Analysis
 • General CAT Scan Information
 • CAT Scan Process
 • Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations

Crash Query Tools

Crash Data Query
• One data file
 – 1 entry per crash
 – Consolidates
 • Vehicles
 • People
 • Years

 • Crash1 – query by state
 • Crash3 – query by local
 • Crash2 – query by individual

Crash1

Crash3
Crash2

LADOTD Highway Crash Reports

- Beginning Year: 2017
- Ending Year: 2018

Options:
- Count of Crashes by City
- Search for a crash number
- Fatal Crashes Only

Limits - All
- Insufficient Crashes
 - Intersections: <5 crashes / year
 - Segments: <5 crashes / year / mile
- Remedy
 - Increase geographic span
 - Increase time span

Limits - Time
- Most recent
- Minimum: 3 years
- Sometimes: 4 or 5 years
- If LOSS 3 or 4 and:
 - Insufficient crashes
- Consistency
 - Similar operations
 - No major construction
Limits - Segments

- Considerations
 - Too small may be too close to randomness
 - Too large may be too close to average

- Suggested extremes

| (miles) | Urban | Rural | Highways
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

- If an end-point is at an intersection, trim it down to avoid the intersection’s functional area

Limits - Intersections

- Considerations
 - Too small, may not capture all crashes
 - Too large, may perform excessive QA

- Preferably at least 150 feet*
 *but do not include other intersections or their functional area(s)

- If too close to another intersection, then split distance between intersections

Segment v Intersection

Exercise 2

- Open Crash1 [http://engrapps/crash1/]
- Input project information
 - Years: 2014 to 2016
 - Control Section 246-01
 - Log-mile from: 0.77
 - Log-mile to: 2.38
- How many crashes?

Agenda

- Safety Program Overview, Safety Management Process, & 23 USC 409
- General Crash Data Information
- Crash Querying
 - Crash Data Analysis
 - General CAT Scan Information
 - CAT Scan Process
 - Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations
- SMP’s Site Specific
 - SMP = Safety Management Process
 - Identify project and limits
 - Query crash data
 - Conduct quality assurance
 - Calculate Safety Service Level
 - Review crash patterns
 - Determine mitigation strategies
 - Develop planning level cost estimates
 - Calculate crash reduction cost
 - Determine benefit-cost ratio
Engineering Judgment

- Dividing Routes into Segments
 - AADT difference >50%
 - Classification change
- Determine Intersection’s limits
- Determine AADT – complicated
- Interpreting Output
- Correcting Crash Data
- Decipher correctable crash pattern
- Designing Mitigation Strategy

Getting Started

Find Coordinate Converter

Find Location

Observe Location

Refine Location
Location Familiarization

- Most data elements from LEOs ~70% - 80% accurate
- Collision Manner – 76%
- Location at 0.05 mile threshold – 75%
- Without Quality Assurance – Answers ≈ Maybe True
- With Quality Assurance – Answers ≈ Likely True

Why partial investigation?

- No need to review
 - error free crashes
 - not road’s fault crashes
 - not over-represented crashes
- Determining mitigation strategies – theory of diminishing returns

Why investigate?

- Most data elements from LEOs ~70% - 80% accurate
- Collision Manner – 76%
- Location at 0.05 mile threshold – 75%
- Without Quality Assurance
 - Answers ≈ Maybe True
- With Quality Assurance
 - Answers ≈ Likely True
Agenda

- Safety Program Overview, Safety Management Process, & 23 USC 409
- General Crash Data Information
- Crash Querying
- Crash Data Analysis
 - General CAT Scan Information
 - CAT Scan Process
 - Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations

What is CAT Scan?

- Crash Analysis Tool
 - Site Level
 - MS Excel based
 - Quantifies
 - Average Daily Traffic
 - Existing Crash Data

CAT Scan Benefits

- Uses Highway Safety Manual methodology
- Use of Safety Performance Functions (SPF)
- Empirical Bayes to account for regression to the mean (RTM) bias

Analysis Use

- Site Level Analysis
 - Traffic Studies
 - Transportation Management Plans
- File
 - Each segment
 - Each intersection
- Not
 - New alignment
 - Unique locations – no model

Where to find?

Internal via Crash1:

External via Website:
CAT Scan Limitations

• Dependent upon great crash data queries
• Dependent upon high quality crash data
• Study location must match a model

Over-coming Limitations

Conducting great crash data queries
 – Time
 • At least 3 most recent years
 • Consistent operations
 – Geography
 • Capture enough area
 • Segments: start with longest of similar classification
 • Intersection: include turn-lanes

Over-coming Limitations

• Crash Data Quality
 – QA (Quality Assurance) section
 • Identifies potential errors
 • Guides partial examination
 • Provides space for correction
 – Goal: 90+% accuracy

CAT Scan Prerequisites

• General knowledge of MS Excel
 – Using Filters
 – Entering data
 – Manipulating data
 – Conditional Formatting – remove duplicates

CAT Scan

• Visual Optimization
 – Spreadsheets hidden
 – Columns minimized
• Open – Nothing locked
 – Careful not to delete
 – Careful to modify

CAT Scan Spreadsheets

• Start: Introductory Information, References, Instructions; Guidance
• Inputs: Place to make global inputs for this workbook.
• QA: (Quality Assurance) Manage crash data review process
• Outputs: Near print ready summary
• CM: Counter-Measure guidance
CAT Scan - Start

- Overview of tool
- Workbook Instructions
- Instruction Guidance
- QA Spreadsheet Overview
- QA Spreadsheet Guidance

Segment Model Development

Example diagram showing the process of CAT Scan and Segment Model Development.

Intersection Model Development

A table with details about Rural and Urban conditions, Unsignalized and Signalized intersections.

Agenda

- Safety Program Overview, Safety Management Process, & 23 USC 409
- General Crash Data Information
- Crash Querying
- Crash Data Analysis
- General CAT Scan Information
- CAT Scan Process
- Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations

Project Process (1of2)

- Start
 - One Segment file
 - Perform QA
- Develop Project
 - Divide Segment (if necessary)
 - Initiate Intersection file(s)
 - Copy appropriate crashes from Segment file(s) to Intersection file(s)

Project Process (2of2)

- Intersection(s)
 - Perform QA
 - Copy appropriate updates or crashes from Intersection file(s) to Segment file(s)
- Publish Results
 - Segment(s)
 - Intersection(s)
Instructions (1 of 2)

0. Location Familiarization ~1 hour
 1. Download Data ~10 min
 2. Import Crash Data ~2 min
 3. Initial Documentation ~15 min
 4. Outputs – Safety Comparison ~2 min
 5. Outputs – Pattern Recognition Analysis ~5 min

Instructions (2 of 2)

6. Quality Assurance: Use if
 – LOSS 3,
 – LOSS 4, or
 – Correctable Crash Pattern
 6. Quality Assurance < 10 min/crash
 7. Printing ~2 min
 8. Reporting Errors ~2 min

1. Ensuring good location

2. Import Data

3. Initial Documentation

Segments:

Helping Hint: use limits to develop project
Exercise 3: Initialize
- Open Folder “Basic Crash Class files…”
- Open Document “CAT Scan – Segments”
- Open Folder “Basic Crash Analysis Class - Exercise 3”
- Open Document “Basic Crash Analysis Class – Reference…”
- Open Folder “Segment”
- Open Document “crash1 (84)”

Exercise 3: Step 2
- Select All & Copy from “crash1 (84)”
- Go to “CAT Scan – Segments”
- Go to spreadsheet “Data”
- Select All & Paste
- Save “CAT Scan – Segments” as “CAT Scan - LA 57 C-S 246-01 LM 0.77 to 2.38 – 20180425”

Exercise 3: Step 3
- Close Document “crash1 (84)”
- Update values to match reference file
 - Log-miles
 - Highway Classification
 - AADT in cell 132
Macro Trust Issues (1 of 2)

- Click the File tab
- Click Options (bottom left). A new dialog box should open.
- Click Trust Center (bottom left)
- Click Trust Center Settings (center right). A new dialog box should open.
- Click Trusted Locations (second option from top left)
- Click Add new locations... (bottom center). A new dialog box should open.

Macro Trust Issues (2 of 2)

- Click Browse... A new dialog box should open. Find the location that you will save these files. Click Ok.
 [You may have to repeat this step if you save your files in multiple locations. Note trusting a parent file will enable trust for each child file within.]
- Click Ok.
- Click Ok.
- Click Ok. (yes three time)
- Close your file.
- Reopen your file. It should be work properly now.

4. Outputs – Filters

- Filters out crashes that does not meet the below criteria
 - Segment
 - Intersection = 0
 - Intersection
 - Intersection = 1
 - Intersection ID of interest

Safety Service Level

LOS5 1: High potential for safety improvements
LOS5 2: Moderate potential for safety improvements
LOS5 3: Low potential for safety improvements
LOS5 4: Nil to low potential for safety improvements

4. Outputs – Safety Comparison
Pattern Recognition Analysis

- Crash attribute as Binomial Trial

\[P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \]

- Each trial compares: subject % vs. class %

114 5. Outputs – Pattern Recognition Analysis

115 5. Outputs – Pattern Recognition Analysis

116 5. Outputs – Pattern Recognition Analysis

117 5. Outputs – Pattern Recognition Analysis

118 5. Outputs – Pattern Recognition Analysis

119 5. Outputs – Pattern Recognition Analysis

120 5. Outputs – PRA

- Gray entries: Difficult to mitigate with infrastructure or traffic operations strategies
 - Same direction movements
 - Rear-ends
 - Left-over-takes
 - Graze with flow
 - Driver behaviors: impairment, etc.
 - Non-road issues: lost cargo, etc.
5. Cumulative Time of Day

![Cumulative Time of Day Graph]

6. Quality Assurance

Columns
- A:I
- CH:CV
- DA:DR
- DU:EP
- ES:EH
- FI:GJ
- GM:HP

Errors Detection: Functions that detect possible errors.
Analysis: Functions that provide further analysis.
User Entry: Space to upgrade the data, provide notes on the crash, provide potential solutions, and provide more specific location information. Changes in this section will be reflected in the Output.
Error Notation: Space to consolidate errors for reporting.
Calculations: Functions that perform the work for other parts of this spreadsheet.
Research: Space to consolidate crash data for research.

6. QA Management

- **Authenticity**
 - A = Authentic
 - B = Beyond Limits
 - Z = Not Authentic
- **Status 1: view**
 - Completed crashes
 - Need Reviewing
- **Status 2: review**
 - Review location
 - Update coordinates
 - Evaluate location
 - Propose solution
- **Status 3: quality**
 - Resolve errors
 - Over-write errors (very sparingly)

6. QA User Entry

- **Update Lat/Long or Location Evaluation** (not both)
- **Review Notes**
- **Possible Solutions**
- **Others depends on review and error mitigation.**

- **Intersection ID**
 - Use "0" when not related to intersection
 - When related to Intersection:
 - Intersection, use [specific id]
 - Segment, use "?"

6. QA User Entry

- **Review Notes**
 - Can't view: no crash report available to review
 - not within study area: removes crash from analysis
- **Intersection ID**
 - Use "0" when not related to intersection
 - When related to Intersection:
 - Intersection, use [specific id]
 - Segment, use "?"

6. QA EDA

- **Error Detection Algorithms**
 - Compare data and note issues
 1. Collision Manner & Crash Type
 2. Collision Manner & Angle
 3. Intersection & Intersection ID
 4. Collision Manner & Location Type & Access
 5. Same as Original
 6. Might be Night
 7. Crossed Center & White Line
 8. Road Depart & Crash Type
QC vs. QA

• QC: Quality Control
 – Performed before and after QA
 – Before: restrict inputs
 – After Decide:
 • Need more QA
 • Use or Not

• QA: Quality Assurance
 – Network/Global level
 – Project level
 – Sample and correct

6. QA Analysis

• Solution Count
• Evaluation Score
 – heuristic for evaluation management
 – Factors
 • Segment – 18
 • Intersection – 13

6. QA Error Notation

• Mostly Automatic
• “why”
 – Corrected value = Original value
 – Resolve: delete corrected value
• Other: for notation of errors not otherwise captured

6. QA Process (1 of 4)

A. After establishing parameters – Input
B. After running PRA – Output
C. Initiate QA spreadsheet
 1. Filter Authenticity by Z – delete entries
 2. Filter Status1 by Yes
D. Start at bottom – work upward
E. Run PRA – if not first time and segment

6. QA Process (2 of 4)

F. Copy crash number
G. Paste into Crash2 & run query
 1. Open location
 2. Open report
 a. If Investigating Agency <> A (LSP)
 – open crash report
 b. If Investigating Agency = A (LSP), Then go to ThinkStream to open crash report

6. QA Process (3 of 4)

H. Review location and either:
 1. Update Lat/Long or
 2. Location Evaluation
I. Review Notes
J. Possible Solutions
K. Resolve Errors
6. QA Process (4 of 4)

L. Loop back to F – until no new crashes appear
M. Reapply filter
N. Do more crashes appear
 1. Yes: Loop back to E
 2. No: proceed to Step 7

7. Printing

- Output spreadsheet
- Select Print Preview
 - Segment: 4 pages
 - Intersection: 3 pages
 - TMP: +2 pages (manual addition)

8. Reporting Errors

E-mail CAT Scan files:
Bryan.Costello@LA.gov

Agenda

- Safety Program Overview, Safety Management Process, & 23 USC 409
- General Crash Data Information
- Crash Querying
- Crash Data Analysis
- General CAT Scan Information
- CAT Scan Process
 - Interpreting the Data, Selecting Mitigation Strategies, BCA, and Other Considerations

Mitigation Strategies

- Engineering Judgement
 - Decipher correctable crash pattern
 - Design mitigation strategy
- CM spreadsheet
- CMF Clearinghouse
 <http://www.cmfclearinghouse.org/>
Economic Appraisal

- Safety Benefit Cost
 - Benefits of reduced crashes
 - CMF * Facility Average
 - When using multiple CMF, one should not reduce the same crash more than once
 - Cost of modifications
 - Estimated construction
 - Not right-of-way acquisition

Other Considerations

- ADA Transition Plan
- Complete Streets Policy
- Bicycle Planning Tool
 - Network Analysis
 - Recommended Facility Type
- Local Plans
- Stakeholder Input

DOTD Maps

ADA Transition Plan

- State routes with existing sidewalks only
- ADA Program Funds available
- Required to fix deficiencies if within project limits (even PRRR)

Bicycle Planning Tool

Recommended Facility Type:

Questions

Bryan.Costello@LA.gov