Crash Magic
LADOTD studies in Crash Magic

http://engrapps/cm

This application is used to generate a report of traffic crashes and collision diagram that occurred on the state maintained system using route and milepost/milepoint or control section and log mile specific to DOTD data.
LADOTD studies in Crash Magic

- This document is to show how to gather collisions in Crash Magic that are specific to LADOTD data.
- The study specifies the collisions that will be gathered from the database. Once a study is created; Charts, Diagrams, Listings and layouts can be created. For more information on these reports check out the help button in Crash Magic.
- This document also assumes that the user can open the Crash Magic web page and log into Crash Magic. (Enter User ID/Enter Password/Click Analysis Button)

Route Milepoint study for data/collisions 2008 or newer:

1) Click the Milepost study button.

2) Date range: Select the date range for the time period for the location.
3) Route: This field is where you will enter the route name. Interstate routes should use an I in the prefix Example I010.
4) Milepost range: This is where you will enter the Milepoint range for this study.
5) Query: Select Milepoint from the drop down list. The query specifies how Crash Magic will be gathering the collisions to be used.
6) Once the data has been entered Click on any one of the report buttons to create a report from the information entered (Charts 📈, Diagrams 📈, Listings 📊 and layouts 🏷).

Control Section Log Mile study:

1) Click the Milepost study button 📈.

2) **Date range:** Select the date range for the time period for the location.

3) **Route:** This is where you will enter the Control Section. This field requires the "-". Example 007-08.

4) **Milepost range:** This is where you will enter the Log Mile range for this study.

5) **Query:** Select Control Section Log Mile from the drop down list.

Route Milepost study for data/collisions prior to 2008:

1) Click the Milepost study button 📈.
2) **Date range**: Select the date range for the time period for the location.

3) **Route**: This field is where you will enter the route name.

4) **Milepost range**: This is where you will enter the Milepost range for this study.

5) **Query**: Select Milepost from the drop down list.

All Data study:

1) Click the Node study button

2) **Date range**: Select the date range of collisions that you would like to report on.

3) **Query**: Select Collisions by Date from the drop down list.
Query builder helpful hints:

Background:
Improper use of the "OR" operator (\(|\) can result in an undesired data set, no data at all, or all data being returned. This article is to help understand its correct use.

Status:
Info - "how to" article

Keywords: filter, or, true, false, value

Categories: *Filters / queries*

Explanation:
Suppose you've created a filter like this to remove pedestrians from your diagram.

(First_Harmful <> Ped~school) | (First_Harmful <> Pedestrian)

This filter does not filter any crashes from your diagram.
Solution:

Filter statements will always resolved to true or false. When you use an or (|) statement in your filter you are asking if condition one or condition two is true for each crash record. A true resolution of either condition will include the crash, and only a false resolution of both conditions will filter the crash.

Here is an example of how (First_Harmful <> Ped_~school) | (First_Harmful <> Pedestrian) would work.

Crash value:

Ped_~School ((First_Harmful<>Ped_~School)=False or (First_Harmful<>Pedestrian)=True) statement is true
Pedestrian ((First_Harmful<>Ped_~School)=True or (First_Harmful<>Pedestrian)=False) statement is true

Ped_~School and Pedestrian values would not be filtered from the list of crashes.

The correct way to write this filter would be to use an and statement

(First_Harmful <> Ped_~school) & (First_Harmful <> Pedestrian)

Value used:

Ped_~School ((First_Harmful<>Ped_~School)=False and (First_Harmful<>Pedestrian) =True) statement is False
Pedestrian ((First_Harmful<>Ped_~School)=True and (First_Harmful<>Pedestrian)=False) statement is False

Ped_~School and Pedestrian values would be filtered from the list of crashes.

Pre-Defined roadway categories/schematics:

- **Address** – These schematics are dynamically generated based on the address range of the study. Each section of the schematic represents a hundred block range. Collisions are then placed based on the value from the _BlockAddress field in the P_Default calculated fields. The _BlockAddress field will be set to 0 for collision data that does not contain address information. The two characters at the end of Address indicate the direction of the block range.

- **Approach** – These schematics represent just one leg of an intersection. (i.e. the north approach) These schematics provide a high degree of detail related to the distance from the intersection. Since more room is available for crash graphics in the approach leg than in a 4 leg diagram, more areas are defined. Collision data must have distance from intersection and direction from intersection defined in the _DistFromInt and _DirFromInt of the P_Default calculated field. Collision data that lacks this information will default to 0 distance from intersection and a null direction from intersection.

- **Corridor** – These schematics are designed to represent crashes that contain address, hundred block data or other reference location information. They can depict the relative position of each crash along the given corridor. A number of different corridor options provide greater resolution / spacing between the end points.

- **Corridor/Part/** – These are various sections of the Address, Corridor and Milepost schematics. Dynamic schematics are built from these parts. Users should avoid selecting these schematics.

- **Int_4** – These are the most commonly used schematics. They depict 4 leg intersections of many types. Intersections with 1, 2, 3 and 4 turn bays. There are also boulevard schematics and schematics which provide special support for distance and direction from the intersection.
• Int_T – These are ‘T’ intersections. They are available in most of the same varieties as the Int_4 category. As would be expected, they are available for each approach direction.
• Int_Y – These are ‘Y’ intersection templates. In order for them to be used, they must first be customized to reflect the data available that indicates which street(s) the crash occurred on.
• Mid_blck – These schematics depict locations which include crashes which occurred between intersections. There are a variety of these which can also include lanes when such data is available.
• Milepost These schematics are dynamically generated based on the milepost range of the study. Each section of the schematic represents a tenth of a mile section. Collisions are then placed based on the value from the _Milepost field in the P_Default calculated field. The _Milepost field will be set to 0 for collision data that does not contain milepost information. The two characters at the end of Milepost indicate the direction of the range.
• Mult_int – These are diagram template(s) that depict more than one intersection in the same diagram. These will need to be modified to support data.
• old – This category contains all of the pre-version 6.0 schematics. Since the schematics changed fairly substantially in version 6, and some users may be attached to the original ones, we’ve provided updated versions of the original schematics.
• RoundAbout – These schematics are designed to display roundabout intersections.

Printing reports and or crash diagrams:

• Clicking the print button on a crash diagram or list report will render a pdf of the diagram that you can save to your system.
• You can also export the list as a csv file that Microsoft Excel will open doing the following steps.
 1) Log into Crash Magic.
 2) Click on the name of your study in the tree on the left.
 3) Once on the study click on the export button at the bottom of the blue study info tab (This is a button with 010 and an orange arrow coming from the top and pointing left).
 4) Select 1. the field list to export(You can create others but Control section log mile or Route milepoint should be there).
 5) Change 3 Output Type to csv.
 6) Click the Export button.
 7) When IE asks what you would like to do with the txt file Select Save As.
 8) Change the Save as type to All Files (*.*)
 9) Change the name to (your name).csv.
 10) Click Save.

If at any time during the process you have a question or need assistance, please don’t hesitate to contact my office.

CONTACT INFORMATION:

Michael Connors, Michael.Connors@LA.GOV, Work #: (225) 379-1451

Helpful Link(s):
Crash Magic

Cookies not enabled

This installation of Crash Magic requires that cookies be enabled in your browser. Cookies do not appear to be enabled in your browser.

Return to Crash Magic (/cm/ CrashMagicOnline_ISAPI.dll/)

NoCookies.htm
US 61 @ Thomas Road

31 crashes

Thomas Road

US 61

- Straight
- Stopped
- Unknown
- Backing
- Overtaking
- Sideswipe
- Parked
- Erratic
- Out of control
- Right turn
- Left turn
- U-turn
- Fixed objects:
 - Pedestrian
 - Bicycle
 - Injury
 - Fatality
 - Nighttime
 - DUI
 - General
 - Pole
 - Signal
 - Curb
 - Tree
 - Animal
 - 3rd vehicle
 - Extra data

Pt Programming, Inc. 8/1/2014
US 61 @ Thomas Road

31 crashes

Route 0061
Milepoint 84.84
Csect 019.02
Lognum 2.18
pdo acc 1
fat acc 0
inj acc 0
num fat 0
num inj 0

crash date 04/24/2010
most harm event Coll With Utility Pole
type coll Z
type acc Running Off Roadway
surf cond Dry
crash num 0001276
parish 17
hour 22
Int Yes
iv agy City
dr trw N
move prior J